変位制御型ブレース付き鋼構造骨組の順序統計量に基づくロバスト最適設計

正会員	○岸田	澄雄*	同	山川	誠**
同	朝川	岡川** *	同	永野	康行****

地震応答制御	ロバスト性	順序統計量
PC 鋼棒	最適設計	

1. はじめに

建築構造設計においても不確定性への配慮が求められる。 降伏後の剛性を制御できる変位制御型 PC 鋼棒ブレース

(DRB)は耐震ロバスト性向上に有効であることが知られている¹⁾。本研究では,DRBの設計に順序統計量に基づ くロバスト設計法²⁾を適用する。建設省告示第1461号に定 められた地震動(告示波)を設計用地震動と与えて設計 し,耐震ロバスト性の検証として上町断層帯の予測地震 動(上町波)に対する応答制御性能を評価・分析する。

2. 順序統計量に基づくロバスト設計

設計変数ベクトル $\mathbf{x} = (x_1, \dots, x_d)$ および不確定変動パラメ ータ $\boldsymbol{\theta} = (\theta_1, \dots, \theta_r)$ に対する建物応答を $g = g(\mathbf{x}; \boldsymbol{\theta})$ と表し, ロバスト最適設計問題を

$$\underset{\mathbf{x}}{\operatorname{minimize}} \max_{\boldsymbol{\theta} \in \Omega} \{ g(\mathbf{x}; \boldsymbol{\theta}) \}, \quad \text{s.t. } x_i \in \mathcal{X} \ (i = 1, \cdots, d)$$
(1)

と与える。ここで、 $\max_{\mathbf{0}\in\Omega} \{g(\mathbf{x};\mathbf{\theta})\}$ は最悪応答値、 \mathcal{X} は 設計変数の許容領域、 Ω はパラメータの変動領域を表す。 領域 Ω 上で一様に分布する確率変数列 $\mathbf{0}_1, \dots, \mathbf{0}_n$ を考えると、 対応する建物応答 $g(\mathbf{x};\mathbf{0}_1), \dots, g(\mathbf{x};\mathbf{0}_n)$ は確率変数となる。 この確率変数を降順に並べ替えたものを

$$Y_{1,n} \ge \dots \ge Y_{k,n} \ge \dots \ge Y_{n,n} \tag{2}$$

と表す。 Y_{kn} ($1 \le k \le n$) は第k 順序統計量と呼ばれ,第k 順 序統計量を最小化するロバスト最適設計問題

minimize
$$Y_{k,n}(\mathbf{x})$$
, s.t. $x_i \in \mathcal{X} \ (i = 1, \dots, d)$ (3)

を考える。ある
$$k, \alpha, \beta$$
について $n = n(k)$ の標本数があれば,
Pr{Pr{Y $\leq Y_{k_n}} \geq \beta} \geq \alpha$ (4)

が成り立ち, $\alpha = \beta = 0.9$ の場合, k = 5, n = 78とすれば, 「 $Y_{5,78}$ が上位10%以内の最悪応答値となる確率は90%以上」である。

3. 解析モデル概要

3.1 構造物モデル

PGV 50 cm/sec 相当の設計用地震動(告示波)に対して はオイルダンパーで入力エネルギーを吸収させ,その想 定を超える高レベル地震動(上町波)に対しては,DRB がストッパー機構の役割を果たすことを想定する。図1 に示すように、1ヶ所あたり片側4本,計8本の PC 鋼棒を DRB に用い,ブレース端部を離間させることで常時は弛 緩させ,引張側にある程度の層間変形が生じたときに剛 性材として作用させる。建物モデルは9層2スパンのオイ ルダンパー付き鋼構造骨組を対象とし,各層質量72 ton, 梁はH形鋼,柱は角形鋼管,DRBとオイルダンパーを図2 に示すように配置する。柱梁断面を表1に示し,柱梁材に は SN490, DRB には SBPR 1080/1230を用いる。各層に配

Robust design optimization based on order statistics of momentresisting steel frames using displacement-restraint braces

			7	長1 柱	:梁断	f面				
-			梁				柱			_
	G1	H-600)×250	$\times 12 \times$	25	C1	□-4	00×2	5	
	G2	H-600)×250	$\times 12 \times$	22	C2	□-4	00×2	2	
-						C3	□-4	00×1	9	_
<u> </u>							_			
	_ <u>_</u>					DR	в —	· Oil Da	amper VRFL	
	*	5	, /	>		· · · * *	G2	C3		ε
l l		^	B			222× · · ·			⊘9FL	4
	\sim	\mathscr{N}	$//\sim$	7		a sa si	G2	63		Ę
						· •			⊘8FL	- 4
ĺ	i		PC steel	bar			G2	сз		4 E
			W.			2° · ·			⊽7FL	
		Oil Dam	nper 🔪				GI	C2		4
							61		⊘6FL	
4						a server a		C2		4
							G1	=	VSFL	- -
Γ		-PC steel	bar					C2	∀4FI	4
		0" 0				·	G1			ε
		Oil Damp	ber						⊘3FL	4
						and it	G1	C1		Ę
									⊘2FL	- 4
						· · · · · · · · · · · · · · · · · · ·	G1	CI		Ē
		-PC steel	bar D		_				⊽1FL	_ `
	A-A	<u></u>	B A II A	- Б		4m	8m		_ ~	
2 2	g 1 DR	Bとオ	イルタ	シハ-	_	X	2 解	析七	テル	•
1E	orce (kN)			1:	Stress (N	/mm²)			
				-						
<i>f</i> r	Г	0.068 (1080				7	
	/	0.008 C	<				/		/	
		fr: Relie	f force				/			
		vr : Relie	ef velocity			/	u0 : In	itial disp	placem	ent
1	(C: Dam	iping coett	icient		1	E: Yo	oung's m	nodulus	5
\sim		Ve	locity (c	m/sec)	Ļ	$\rightarrow \uparrow$	R	/	Stra	ain
	+	ーだい		15.0		u_0	פסח			
	N 1	ルメン	- 2 11 2	H [*] • ^o	ь		ᆎᆂᆘᅭ			
		১০ ১	112	メンハ	-2		い特性			
表	2オイ	イルダン	ノパー(のパラ	メ—	タ (単	位: kN	I. cm	/sec	;)
	1	2	3	4	5	6	7	<u>,</u> {	3	<u>,</u> 9
f_r	800	1200	800	800	800) 400	400	20	00	_

置したオイルダンパーの減衰特性のリリーフ荷重 f_r とリ リーフ速度 v_r を表2に示す。数値解析にて、DRB の初期変 位 u_0 と PC 鋼棒の直径 d を設計変数にとり、それぞれの候 補解を表3に示す。有限要素解析ソフトウェア OpenSees³⁾ により時刻歴応答解析を行う。

2.6

2.6

3.2

1.8

3.2

6.4

表 3 設計変数								
装置	設	計変数	標準規格 X					
חחח	u_0	(mm)	{0, 4, 8, 12, 16, 20, 24, 28}					
DKD	d	(mm)	{9.2, 11, 13, 17, 23, 26, 32, 36, 40}					

KISHIDA Sumio, YAMAKAWA Makoto ASAKAWA Takeshi, NAGANO Yasuyuki

3.2

 $v_{\rm r}$

4.3

3.2 表層地盤増幅を考慮した地震動

+勝沖地震の八戸港湾(EW 成分)と宮城県沖地震の東北 大学(NS 成分),兵庫県南部沖地震の神戸海洋気象台(NS 成 分),乱数位相7波からなる計10波の位相特性を p と表す。 位相特性 p に対し,建設省告示第1461号に規定される解 放工学的基盤での加速度スペクトルに適合する地震動を 作成し,PGV 50 cm/sec に基準化したものを「告示基盤波」 とよぶ。表4に示す2層地盤を考え,表層地盤の層厚 H と せん断波速度 V_sを不確定変動パラメータに加え,不確定 変動領域 Ω を次式で与える。基盤波に対し,これらの不 確定変動を与えたものを「告示表層波」とよぶ。

実 / ₩般娃性

-			- A - FU			
	困	上厨	層厚	質量密度	せん断波速度	
	層	上貝	(m)	(t/m ³)	(m/sec)	
	1	砂	$40 \le H \le 60$	1.85	$125 \le V_{\rm s} \le 400$	
	2	Τ.	学的基盤	1.95	400	

4. 解析結果

4.1 数值解析

提案手法の応答低減効果について数値解析例を通じて調べる。表5に示すように、DRBの初期変位 u_0 とPC鋼棒の 直径dの設計について、以下の2ケースを行う。

[Case 1] 告示基盤波 (PGV 50 cm/sec に基準化した10波) を入力地震動に与えて問題(1)を解く。

[Case 2] 告示表層波(告示基盤波をランダムに増幅させた 78波)を入力地震動に与えて問題(3)を解く。

これらの設計問題に対し,局所探索法⁴を用いて得られ た DRB の最適解を表6に示す。不確定変動を考慮しない Case 1では,DRB は上層部にのみ配置される結果となった。 オイルダンパーにより十分な応答低減がなされているた めと考えられる。一方,不確定変動を考慮した Case 2では, 下層部の DRB の初期変位および直径が大きくなるよう設 計されている。不確定変動の影響の低減には,下層部へ の DRB 配置が有効であることが示唆されている。

表5 最適設計

	問題	图 不確定変動 入力地震動					
Case 1	(1)	考慮なし	告示基盤波(10波)				
Case 2	(3)	考慮あり	告示表層波(78 波)				

		衣(ン取り	 西 	(DRB	,里1	<u> </u>	1)		
		1	2	3	4	5	6	7	8	9
C 1	u_0	_	_	_	_	_	4	4	4	0
	d	—	_	—	—	_	17	23	40	40
C 2	u_0	24	12	12	8	8	4	12	_	_
Case 2	d	40	26	36	26	23	17	36	_	_

*東京理科大学大学院 大学院生

**東京理科大学 教授 博士(工学)

***東京電機大学 准教授 修士 (工学)

****兵庫県立大学 教授 博士 (工学)

4.2 耐震ロバスト性評価

PGV 50 cm/sec のレベルを超える地震動に対する評価を 耐震ロバスト性評価と位置づける。文献5)では、大阪市域 で想定されている上町断層帯の予測地震動が、PGV に応 じて整理されている。その中で、PGV 75, 100, 125 cm/sec 相当の地震動をそれぞれ36波、計108波をロバスト性評価 に用い、以降では「上町波」と参照する。Case 1と Case 2 の設計解に上町波を与え、時刻歴応答解析により得られ る最大応答層間変形角の統計量を図4に示す。表7および 図4において、Case 2は Case 1に比べ、すなわち不確定変動 を考慮することにより、最大応答層間変形角が最大値で 18%、平均値で11%、標準偏差で25%低減され、建物のロ バスト性が向上されていることが確認できる.

表7 最大応答層間変形角 (単位: 0.01 rad)

Case 1 (不確定変動考慮なし) Case 2 (不確定変動考慮あり) 図 4 最大応答層間変形角の相対度数分布 (単位: 0.01 rad)

5. まとめ

順序統計量に基づくロバスト最適設計を行い、上町断層 帯の予測地震動に対するロバスト性を評価した。

- 不確定変動を考慮することにより、想定を超える PGV レベルの地震動に対しも、最大応答層間変形角が最大 値で約18%、標準偏差で約25%低減される。
- 2) 耐震ロバスト性の高い設計解では、下層のブレースの 初期変位が大きく、直径が大きくなる。

参考文献

- 渡邊佳菜,山川誠,朝川剛:変位制御型ブレースと制振機 構を用いた鋼構造骨組の応答制御設計,構造工学論文集, Vol.66B, 2020.3
- 山川誠,大崎純:順序統計量を用いて地震動特性のパラメ ータ変動を考慮したロバスト最適設計,構造工学論文集, Vol.62B, pp.381-386, 2016
- Open System for Earthquake Engineering Simulation (OpenSees), PEERC, UC Berkeley, https://opensees.berkeley.edu/
- Ohsaki M: Optimization of finite dimensional structures, CRC Press, 2010
- 5) 大阪府域内陸直下型地震に対する建築設計用地震動および 設計法に関する研究会:大阪府域内陸直下型地震に対する 建築設計用地震動および耐震設計指針,2015

*Graduate School, Tokyo University of Science.

**Prof., Tokyo University of Science, Dr. Eng.

***Assoc. Prof., Tokyo Denki University, M. Eng.

****Prof., University of Hyogo, Dr. Eng.