想定南海地震における都市規模の建物被害予測 - 行政データ情報に基づく鋼構造建築物を対象として-

防災	可視化	被害予測
応答解析	防災計画	IES

1. はじめに

想定南海地震への対策は必要性の高い問題である。 広域での被害が予想される想定南海地震に対して具体 的な対策を立案するためには、1 棟 1 棟の建物に焦点 を当てた詳細な被害予測が望ましい。しかし、詳細な 被害予測は膨大な計算量を必要とするため、実務的に は地域を分割して複数の建物をまとめる集計的な被害 予測が行われてきた。もし、地域の全建物の 1 棟 1 棟 に対してシミュレーションに基づく詳細な被害予測が できれば、その結果は具体的な避難計画の立案に役立 つと考えられる。本研究の目的は統合地震シミュレー タ(IES: Integrated Earthquake Simulator)^{[1][2]}による地域 規模の時刻歴応答解析の結果を用いて、想定南海地震 への具体的な避難計画や、現状把握を行う一例を紹介 し、地域規模の解析の導入への問題点や可能性を示す ことにある。

さらに、鋼材はどのような部材であってもヤング係数 が一定であるため、鋼構造建築物は木構造や RC 造と比 較して弾性モデルの計算をすることが容易い。今回、 鋼構造建築物に焦点を当てて解析を行うことで全体を 通してより詳細な解析結果を算出し、追って木造や RC 造に応用させ、地域全体を通したリスクコミュニケー ションにつなげる。

2. 対象地域

淡路島は兵庫県内の中でも想定される震源に特に近 く、その海側に位置する南あわじ市福良地区は津波に よる被害が予想される。この地域での想定南海地震を シミュレーションすることで現状の把握及び今後の具 体的な対策・施策につながることを期待する。

3. 使用した地震波

本研究では巨大地震と予想されることを考慮して、 想定南海地震波(陸側ケース)を採用した。対象とな る福良地区での任意の建物における想定南海地震(陸 側ケース)の NS 方向の地表面加速度と EW 方向の地表

Prediction of building damage at the district level due to the Nankai earthquake -Targeting steel-structured buildings based on administrative data information-

正会員	○本田理奈*
正会員	大谷英之**
正会員	永野康行***

面加速度から作成した波形を図 1、各方向の最大加速 度を表 1 に示す。

表 1 各方向の最大加速度

NS 方向の地表面最大加速度	7.48(m/s ²)
EW 方向の地表面最大加速度	$6.78(m/s^2)$

4. 建物分布

本研究で想定した鋼構造建物(803 棟)分布は行政デー タを参照した。これと国土地理院の基盤地図情報に基 づく道路と海岸線を ESRI ジャパン社の ArcGIS によっ て重ね合わせた。作成したものを図 2 に示す。

図 2 鋼構造建物分布

5. 最大層間変形角による建物応答 被害想定を行うにあたり、2章で述べた範囲におい

HONDA Rina, OHTANI Hideyuki and NAGANO Yasuyuki

て、IESを用いて時刻歴応答解析を行った。解析結果 の最大層間変形角を1/75,1/200(rad)の閾値を基に3種類 に場合分けした。閾値に用いた最大層間変形角の値は、 許容応力度等計算による層間変形角の確認に用いられ る1/200(rad)、保有水平耐力計算のプッシュオーバー解 析の際に用いられる値である1/75(rad)を基とした。最 大層間変形角≤1/200を緑、1/75<最大層間変形角 ≤1/200を黄、1/75<最大層間変形角 ≤1/200を黄、1/75<最大層間変形角 を濃黄とした最大 層間変形角の応答図を図3に示す。(個人情報保護にあ たり、図3の加工を行っている。)表2に被害想定の 区分を示す。

図 3 最大層間変形角応答図

表 2 最大層間変形角応答の区分

濃黄:1/75<最大層間変形角	場合によっては倒壊
黄:1/75<最大層間変形角≤1/200	倒壊の可能性がある
禄:最大層間変形角 ≤ 1/200	倒壊の可能性が低い

対象の地域での最大層間変形角応答の区分ごとの建 物棟数を表 3 に示す。

表 3 角	支大層	間変形	角応答	区分こ	と	の建物棟	敪
-------	-----	-----	-----	-----	---	------	---

最大層間変形角応答の区分	建物数
濃黄(1/75<最大層間変形角)	6
黄(1/75<最大層間変形角≤1/200)	112
禄(最大層間変形角 ≤ 1/200)	685

先行研究^[4]では、地震による木造建物の被害が大き いことを想定し、表 2 の区分を木造建物に考慮した値 とした。本研究では鋼構造建築物にのみ着目し、最大 層間変形角の応答値から被害の可視化を行った。表 3 より最大層間変形角の値が 1/75 より大きい建物は6棟 であった。木造だけでなく、鋼構造建物にも倒壊する 可能性があることを考慮したうえで地震への対策を講

兴庫宗立八十八十匹旧和仟十卯九仟	旧积汉	- 侍工(工于)
***兵庫県立大学大学院情報科学研究科	教授	・博士(工学)

じていく必要があると考えられる。

6. おわりに

本研究では現状の把握として建物の構造種別と時刻 歴応答解析手法による最大層間変形角応答の可視化を 行った。これにより福良地区において想定される建物 の最大層間変形角応答がどのように分布しているかを 可視化することができた。それらを基に防災について 考えることでより現実を見据えた対策が可能となる。 一方で、施策へとつなげるためには、情報を公開する ことによる経済に与える影響やプライバシーの問題な どを考慮する必要がある。本研究では鋼構造建築物に 着目したが、この結果から木造や鉄筋コンクリート造 の建物に応用させた都市に分布する建物を考慮した最 大層間変形角応答の可視化を行う。今後は建造物と被 害想定のつながりを相互に考慮するようなことができ ればより精度の高い可視化が可能になる。

謝辞

本行政データは南あわじ市より研究目的での提供を 受けた。

本研究は日本鉄鋼連盟による 2021 年度「鋼構造研 究・教育助成事業」の研究助成(本田理奈「鋼構造建 築物特性を利用した地震応答解析手法と経験的手法に よる新しい減災復興モデルの構築」2021 を受けた。

本研究の成果の一部は、令和3年度文部科学省「地 震・火山観測データを活用した減災・復興モデルの構 築とリスクコミュニケーションに資する事例収集(課 題番号:HYG01、研究代表者:阪本真由美(兵庫県立大 学大学院減災復興政策研究科・教授))」により遂行し た。ここに記し謝意を表す。

参考文献

[1] 藤田航平, 市村強, 田中聖三, 堀宗朗, Lalith MADDEGEDARA:3 次元地盤振動解析と多変数シナリオの構 造物応答解析による都市地震シミュレーション,土木学会論文 集 A1(構造・地震工学), Vol.71, No.4(地震工学論文集第 34 巻), I 680-I 688, 2015

[2] 堀宗朗,田中謙吾, Sobhaninejad Gholamreza,市村強,小 国健二:自然災害シミュレーションのための GIS から都市モデ ルへの汎用的データ変換,土木学会論文集 A, Vol.60 No.1, pp.1-12, 2010.1

pp.1-12, 2010.

[3] 国土地理院:基盤地図情報(2020年9月参照)

https://fgd.gsi.go.jp/download/mapGis.php

[4] 本田理奈,大谷英之,永野康行:想定南海地震における都市 規模の建物 被害予測 -兵庫県南あわじ市福良地区を対象と して-,日本建築学会近畿支部研究報告集,第 61 号 〈構 造 系〉,pp257-260,2021

* Graduate Student Grad, sc. Sim. Studies, University of Hyogo

** Research Scientist, RIKEN Center for Computational Science. Assoc Prof., Grad. Sch. Info. Sci., University of Hyogo, Dr.Eng.

*** Prof., Grad. Info. Sci., University of Hyogo, Dr.Eng.