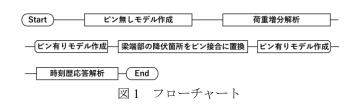
複数回の地震を経験する鋼構造建築物の梁端部の損傷を考慮した地震応答解析

正会員 ○三田凜也* 正会員 永野康行**

鋼構造 損傷 残留変形

梁端部 ピン接合

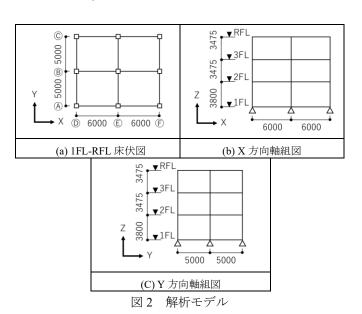

1. はじめに

阪神・淡路大震災では多くの建築物が被害を受けた。 このうち、鋼構造建築物は倒壊や大破は免れたものの、 構造上の要である柱と梁の接合部に破断が生じた事例が 確認された1)。このような被害が確認された建物では、総 じて残留変形が少なく、外装材の損傷が比較的軽微であ った。そのため、外観目視による調査だけでは接合部破 断等の被害の有無を発見することが困難である。また、 国はマグニチュード 9.0 の南海トラフを震源とする巨大地 震の震度分布を公表しており、兵庫県南部では震度5強か ら震度6弱になるなどの想定がされている。以上から、阪 神・淡路大震災を経験した建物が再び強い地震の揺れに 遭遇した場合の検討が必要である。

本研究の目的は、鋼構造建築物が複数回の地震を経験 することを仮定し、梁端部の損傷を考慮した上で建物の 応答を評価することである。

2. 研究方法

鋼構造建築物を対象として、フレームモデルに置き換 える。過去の地震により梁端部が損傷したと仮定し、損 傷の考慮はその箇所をピン接合に置き換えることで再現 する。一貫構造計算ソフト SS7 3)から得られる荷重増分解 析でのステップ数ごとの降伏箇所を損傷したとみなし、 その箇所をピン接合としている。降伏箇所無しの場合を Case ①とする。Case ①以降をCase ① (i = 1 ~ N) とする。 Case①でピン接合に置き換える箇所はそれ以前に降伏した 箇所と新たに降伏した箇所を足し合わせたものとなる。 ステップ数毎にケース分けし、作成したフレームモデル を 3D DynamicPRO ²⁾を用いて時刻歴応答解析を行う。


3. 例題

3.1. 解析モデル

3層2方向ラーメン構造の鋼構造建築物 4を解析モデル

Study on Seismic Analysis of Steel Structure Considering Damage

とした。図 2 の(a)に 1FL-RFL の平面図、(b)、(c)にそれぞ れ X、Y 方向の断面図を示す。ピン有りのモデルは 11 ケ ースあり、最大で30箇所降伏している。例として、図3 にCase 7の解析モデルにおける降伏箇所を示す。入力地震 動には「1995 年兵庫県南部地震の際に JR 鷹取駅で観測さ れた加速度波形の NS 成分(以下、鷹取波と呼ぶ)と、 2012 年に中央防災会議で作成された想定南海トラフ巨大 地震の工学的基盤における加速度波形の公開データを基 に「神戸の減災研究会」が作成した神戸市役所所在地に おける表層地盤における加速度波形(以下、想定南海ト ラフ波と呼ぶ)」⁴⁾を用いることとした。Y方向のみの一方 向加振とした。

(5) (1) (4) 3 67

7 2 (5) (a) E 通り軸組図 (b) D・F 通り軸組図

図 3 Case 7 の降伏箇所

MITA Rinya and NAGANO Yasuyuki

3.2. 解析結果

図 4 の(a)-(c)、(g)に鷹取波を用いた解析結果、(d)-(f)、(h)に想定南海トラフ波を用いた解析結果を示す。最大層せん断力および最大加速度はピン接合が多くなるほど応答値が小さくなる傾向がある。一方、最大層間変形角はピン接合が多くなると応答値が大きくなる傾向がある。残留層間変形角はピン接合の数に関わらず様々な応答値となった。

最大層間変形角は鷹取波、想定南海トラフ波のどちらを用いた場合でも、全てケースで 1/200 rad を上回った。また、残留層間変形角は鷹取波を用いた場合、Case①、Case①、Case②のみが層間変形角 1/200 rad 以下であったが、想定南海トラフ波を用いた場合、全てのケースの応答値が 1/200 rad 以下となった。

4. おわりに

本研究では、3 階建て鋼構造建築物をフレームモデルでシミュレーション解析を行った。解析モデルでは梁の損傷を考慮するために、損傷箇所をピン接合に置き換え、入力地震動は鷹取波と想定南海トラフ波として解析を行った。その結果、鷹取波と想定南海トラフ波どちらの場合でも、最大応答値を見ると大きな被害を受けることが考えられる。残留層間変形角を見ると鷹取波より想定南

海トラフ波の方が小さく、倒壊や大破まで至らない場合 は継続して使用できる可能性がある。

謝辞

本研究の一部は、解析にはユニオンシステム株式会社 より導入している「研究室パック」のうち SS7 と 3D・ Dynamic PRO を使用した。また、入力地震動および解析モ デルは E-Defence 実験データ(ASEBI)を使用した。ここ に記し、謝意を表す。

参考文献

- 1) 日本建築学会近畿支部鉄骨構造部会:1995 年兵庫県南部地震鉄骨造被害調査報告書、pp.12-25、30-71、1995
- 2) ユニオンシステム株式会社: Software library SS21/3D・
- 3) DynamicPRO 解説書 計算編、3DDynPROcal.pdf
- 4) ユニオンシステム株式会社: Software library Super Build/SS7 解説書 計算編、SS7 cal.pdf
- 5) 独立行政法人防災科学技術研究所、国立大学法人神 戸大学:地震によって損傷を受けた鉄骨建築物の耐 震安全対策に関する実験研究、E-Defense 実験データ アーカイブ (ASEBI)、pp.3-1-3-14、5-6-5-9

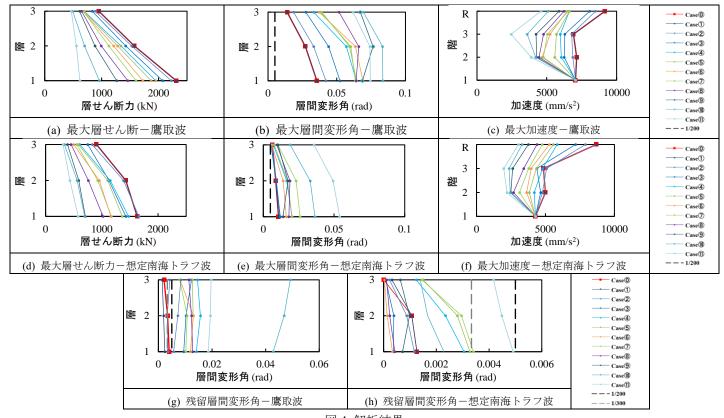


図4解析結果

^{*} 兵庫県立大学大学院減災復興政策研究科 博士前期課程 院生

^{**}兵庫県立大学大学院減災復興政策研究科 教授·博士(工学)

^{*} Graduate Student, Grad. Sch. Dis. Res. and Gov., Univ. Hyogo

^{**}Prof., Grad. Sch. Dis. Res. and Gov., Univ. Hyogo, Dr. Eng